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I. INTRODUCTION

The purpose of any operational model is to aid a decision-

maker by relating his possible alternatives to their consequent

results, thus increasing the knowledge upon which his decision

is based. Therefore a model, in addition to validly represent-
ing the process or system involved, must be capable of dis-

playing the contrast, in terms of meaningful criteria, of even

subtle variations of choice. Sensitivity to variables outside

the area of the current decision is not particularly valuable,

and in fact may produce detrimental complication. In short, a

model should ideally be a reflection of the problem of its user.

It is for this reason that distinct decision problems often

require the use of different models of a single system.

This dependence of model upon problem is no.here more

apparent than in the study of combat dynamics. As an example

a single battle situation may be modeled using game theory if

the decision involves strategy, or using search theory if

alternative fire distributions are being studied, or using

Lanchester theory if weapon characteristics or tactical move-

ments are being considered. Each modeling approach has been

found useful for certain problem types but useless for others.

The purpose of this thesis is to propose an alternate

modeling viewpoint for those probleins in which the structure

of a combat unit must be related to its effectiveness. The

term structure is meant to denote the personnel and equipment

5
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of the unit, the roles of these elements, as well as the

channels employed to receive and transmit information and

instructions. As an example, a decision-maker who must

choose for field test a small number of prototype tank killer

teams from all the infinite organizi'tional possibilities,

faces a structural decision problem, and might profit from

the model to be proposed.

The importance of structure deri-yes from the fact that

when a leader or communicator becomes a casualty, his removal

from the structure produces twin transformations in both the

effectiveness and vulnerability of the unit. These transforma-

tions are determined at least in part by the casualty's posi-

tion in the organization. As an illustration consider a rifle

squad in defense whose squad leader has just become the first

casualty. His function is assumed by a fire team leader, who

must now receive and transmit orders, direct the fire of his

squad and search his sector for targets. The effectiveness of

the squad is reduced not only because one fewer weapon is

firing but because a less highly trained leader is in charge.

The vulnerability has increased for the team leader because he

now must increase his exposure in order to direct the whole

squad and observe its whole sector. The vulnerability of the

whole squad is perhaps increased because it is being directed

with less expertise.

Thus, to know the condition of a unit it is not enough to

know the number of casualties without knowing who they are.

Perhaps the strongest testimony to this viewpoint is the

6 .



universal military principle that enemy leaders and radio

operators are the target, of highest priority in any type of

engagement, and the simultaneous effort to conceal visual

signs of their identity. If the validity of this approach

has been justified the next step is to outline the model

xequ.i:ements.

The decision-maker will be assumed to have available to

him a f;acility for military judgment -ihich will include his

c•,tn assessment of unit and individual vulnerability, and his

own criteria for measuring unit effectiveness on the basis of

its surviving structure. The mission of the model will be to

1) provide a framework in which the decision-maker's
assessment of threat can be specifically quantified,

2) translate the threat assessment into a stochastic

description of the behavior of the candidate
organization,

3) provide a framework for expressing the decision-
maker's effectiveness criteria as an algebraic
function of the unit condition,

4) derive a stochastic description of effectiveness of
the candidate organization, using the effectiveness

function.

Fortunately, the complete process of model construction is

unnecessary, since there already ex.L.ts an established field

of study which treats the concept of structure. The field is

stochastic reliability theory, which has historically devel-

oped in answer to the need for relating the design of complex

systems of mechanical and electronic components to system

effectiveness. The comparison of a system of components to

7



a unit of fighting men may seem rash. However, through a

process of adaptation, a model will be derived which may be

considered more consistent while still taking advantage of

reliability concepts.

Additional reliance on the theory of continuous parameter

Markov processes will permit treatment of significant inter-

dependencies in the attrition process.

The resultant model is one with capacity for immediate

application, iq well as promising opportunities for improve-

ment and ref-4newent.

8



II. RELIABILITY CONCEPTS
ti

Reliability theory deals with collections of inter-

dependent components. These collections are called systems.

A component is any entity which can be described at any time

as either functioning or failed, depending upon its ability

to perform its assigned mission. Components are generally

assumed to be in one of these two conditions. No partially

failed conditions are considered.

The system which is discussed in this thesis is an engaged

combat unit whose components are included in one or more of

the following categories:

1) personnel,

2) weapons and equipment,

3) channels of information and communication.

The number of components in the unit is represented by

the variable n called the order of the unit. Each cornponent

is identified with an integer in the set {l,...,nl, called its

index.

The performance random variable of the ith component is

defined as follows:

Xi (t) = 0 if the ith component is in thefailed condition at time t,

= 1 if the ith component is in the
functioning condition at time t.

The component reliability of the ith component is defined

as follows:

9
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ri(t) = P[Xi(t) = 1].

Since there are n components of interest, it is an obvious

extension to define the performance random vector as follows:

X(t) = (Xl(t),..*.,Xn (t)).

The outcome space of X(t) is the set of all binary n-vectors.

Call this set P This set has N me-bers where N =2

It is often necessary to partition the outcome space $nn

into m subsets, al,...,am, where 1 < m < N, and define a

partition function by assigning a unique real number bi to

all vectors in each subset ai, so that

a(2) = bi if and only if x c ai.

Each vector is a member of exactly one of the subsets.

The first partition function of interest is the state

function s(x), which is constructed by partitioning n n into

N subsets, each containing one vector. The value assigned to

each one-member subset is one of the integers 1,...,N.

There fore

s(x) = j if and only if x c ai and bi j.

It is assumed here that in all cases

s(1) = 1 and

s(O) = N where

1 =(,...,i) and

S0 = 0,...,0).

,J. 0
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The composition of the state fu,, -ion with the perfor-

mance random vector results in definition of the state random

variable

S(t) s(X(t)).

The common practice in reliability theory is to consider

the entire system to be either in the functioning or failed

condition at any time. Predictably the system's condition is

described by a binary random variable. However, when the sys-

tem is a combat unit, such a measure is too coarse to be of

value. Still, since this binary concept is of value in the

adaptation process, it is introduced below.

The structure function O(x) of a system of order n is a

partition function constructed by forming two subsets:

1) a,, the set of all vectors x in nn' such that if

X(t) = x, then the system is functioning,

2) a2 , the set of all vectors y in ,n' such that if

X(t) = y, the system is in the failed condition.

Consistent with the use of binary indicators,

O(x) = l(=b1 ) if and only if x a1

= 0(=b 2 ) if and only if xe a 2 .

Composing the structure function with the performance

random vector results in definition of the structure random

variable

S(t) 0 (x(t)).

11



The system reliability is defined to be

R(t) = P[4(t) 1].

If more than one system is being considered then it is neces-

sary to place a subscript on the structure function, struc-

ture random variable and system reliability.

E A system is called coherent if its structure function

satisfies three conditions:

1) LO) =0,

2) O(1) 1,

3) if x5 , then OW) :S.(y).

Essentially a coherent system is one which fails if all its

components fail, functions if all its components function, and

whose condition is not impaired by improving the concdtion of

any of its components.

A component is called irrelevant if its condition never

has any effect on the value of the structure function.

Components are assumed to be of two varieties. Renewable

components alternate between the functioning and failed condi-

tions. For example, tactical radios are communication channels

whose functioning is interrupted by atmospheric disturbance or

jamming. Nonrenewable components never return to the function-

ing condition after entering the failed condition. Personnel

are nonrenewable components of a unit.

A common graphic method of illustrating the relationship

of component performance to system performance is the use of

the block diagram. Examples of these diagrams are shown in

12



Figures 1-4. The method is derived from the common practice

of representing electrical circuits. Each block corresponds

to the like indexed component of the system. A potential

flow is imagined, attempting to pass through the diagram

I along the connecting arcs. The flow is able to pass through
a component block only if the component is functioning. If

the flow is able to traverse the diagram over any path then

the system is functioning and its structure function equals

one. Irrelevant components are represented by broken blocks

totally unconnected to the system.

Figure 1 shows the block diagram for the system of three

components which functions if and only if all three components

are functioning. This is called a series system. Figure 2

shows a system which fails if and only if all its components

fail. This is called a parallel system. Figure 3 shows a sys-

tem which functions if and only if at least two of the compo-

nents are functioning. This is called a two-out-of-three

system. As in this case, a single component may be represented

by more than one block, with the understanding that all blocks

with the same index are always in the same condition. Figure

4 shows a system with components one and two in parallel, with

component three irrelevant. It should be remembered that the

block diagram shows only structural relationship, and implies

nothing concerning actual location.

A final concept, not unique to reliability, but useful

here, is that of Laplace transformation. Given a function

13
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Figure 2. Parallel System
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c(t), the Laplace transform of c(t). is defined as follows:

L {c(t)} - a(s) = f exp(-st) c(t) dt,
0

a function of s. The function c(t) is called the inverse of

the Laplace transform a(s).

1

I

I
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III. MEASUREMENT OF EFFECTIVENESS

In order to make any description of unit performance

useful to a decision-maker, it is necessary to translate that

description into some measure of effectiveness or goal attain-

ment. Such a measure is useful only if it is consistent with
the decision-maker's standards of value, and is in a form

sufficiently simple to permit reasonable comparison of compet-

ing alternatives. The method developed here, of constructing

such a measure begins with the designation by the user of a

relatively simple instantaneous indicator function based upon

his intuitive value judgments. This function then serves as

a basis for derivation of a one dimensional deterministic

function, which measures unit quality over a variable time

interval.

The actual effectiveness of an engaged unit at a point in

time is a very complex function of numerous variables, includ-

ing friendly and enemy force levels, and many immeasurable

physical and psychological factors. The simplifying assumption

is made here that effectiveness depends only upon the vector of

component performance and the length of time elapsed since the

beginning of the engagement. The enemy performance is not

considered directly, but the designation of an effectiveness

function should reflect consideration of a hostile enemy envi-

ronment, based on a previously determined scenario. The

friendly unit is always assumed to have all components func-

tioning at time zero.

19



! IThe decision-maker's first step is to define a partition

fanction on an" The set is partitioned into subsets ail

i=1,...,m, where vectors in the same subset are judged to

represent equal effectiveness unit conditions. Vectors in

different subsets represent outcomes which are not equally

effective. This partition is performed without reference to

time. To each subset ai is assigned a dimensionless real

number gi, called its absolute effectiveness level. The

function thus defined is called the absolute effectiveness
function g(x) where

g(x) = gi if and only if x c ai,

and the partition is constructed so that

91 < g2 < ... < gmn

It is assumed without serious limitation that

(3-1) g(O) = 0,

(3-2) g(l) = gin

(3-3) if x _ then g(x) < gy

These assumptions merely require that a completely destroyed

unit be considered completely ineffective, that a completely

undamaged unit be considered maximally effective, and that

loss of a component never improve effectiveness.

Since the vector members of S2 n and the integers in the

set {l,...,N) are placed in one-to-one correspondence by the A

state function s(x), it is possible to designate a companion

function to g(x) called the alternate effectiveness function

defined on {l,...iN} such that

20
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d(j) = gi if and only if s(x) j and x £ ai.

It follows that

Sg(x) = d(s(x)).

This function is useful in later calculations.

The construction of the actual effectiveness function is

of extreme importance to the successful employment of the

model. The user should take special care to assure that the

absolute effectiveness levels truly represent his judgment,

not only with respect to ordinal relationships, but to ratio

relationships as well.

A unit's real effectiveness depends upon how long it has

been engaged. One factor to be considered is the change in

enemy situation due to losses or reinforcement as provided in

the scenario. Another consideration is that in missions of

fixed length, such as delaying actions, casualties are less

damaging, the later they occur. To allow for such trends, the

user's next step is to define a time variance function, f(t),

and a resultant actual effectiveness function,

h(x,t) = g(x) f(t).

If in a specific application the variance effect is not con-

sidered, then

f(t) = 1, t > 0

and therefore

h(x, t) =g(x), t 2 0.

,21



The function of g(x) can be expressed in another equiva-

lent manner which shows the close relationship with reli-

ability theory. Esary, Proschan, and Walkup [Ref. 3] point

out that a function such as g(x), having a finite range can

be written as

(3-4) g(x) (g 2 -g 1 ) 01(x) + (g 3 -g 2 ) 02 (x) +

+ (gm-gm'-i) Om-1 (-x)

where the functions i (x) are defined such that

(3-5) Oilx) =0 if and only if g(x) :S_ gi

(3-6) Oi(x) = 1 if and only if g(x) > hi.

It is now shown that each of the functions Oi(x) is the struc-

ture function of a unique binary coherent system composed of

the components of the unit, in which at least one of the

components is not irrelevant: Furthermore the systems are

related in such a way that no system is functioning if any

lower indexed system has failed, and no system is failed if

any higher indexed system is functioning.

Theorem 1

The functions .i(x) in (3-4) arc structure functions of

coherent systems of the n components of the parent system.

Proof

It must be shown that for i=1,...,m,

1) €i(0) = 0,

2) Oi(l) = 1,

3) if x then 0l(X) ! Oi(Y)

22
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I
The proof is by contradiction. The above three points are

each in turn assumed false, and a result, contradicting one

of the assumptions made in defining g(x), is shown to follow.

1) Assume that .i(O) # 0 for some i. Then it must be

that 0i(O) = 1, but then from (3-4)

g (0) > (gi+l-gi) > 0

contradicting (3-1). Thus Oi(O) = 0, for i = l,...,m-l.

2) Assume that 0i(1) # 1 for some i, Then it must be

that 0i(1) = 0, but ther from (3-4)

g(1) < (g 2 -g 1 ) + ... + (gm-gml =gm, or

g(!) < gm

contradicting (3-2). Thus Oi(l) 1, for i=l,...,m-!.

3) Assume that there exist vectors x and y in Rn' such

that x < y and that for some i, 0i(x) > 0i(Y). Since

the function is binary, 0i(x) = 1, and 0i(y) = 0. By

(3-6), •i(x) = 1 implies that g(x) > gi. By'3-5),

S(Z)= 0 implies that g(Y) j gi" Therefore

g(y) < g(x) and x y

contradicting (3-3). Thus if x < y, then

0i(x) :S el(y), for i = i,..., m-1.II

Theorem 2

The functions i(x)i = i,..., m-l, are related as follows:

23



1 ) if k (x) = 1, then 0 (x) = 1, for j - 1,..., k-l,

2) if 0k(X) = 0, then 0j(x) = 0, for j = k + 1,..., m-l.

Proof

The proof is again by contradiction.

1) Let Ok(x) = 1 for some vector x. If k-i then the

result is trivially true. If k > 1, assume that

0 (x) w 0 for some j < k. By.(3-6), Ok(x) = 1 implies

that g(x) > gk. By (3-5), 0 (x) = 0 implies that

g(x) :L gj. Since gj < gk' it follows that

(x) < gk < _(x

an obvious contradiction. Therefore W(x) 1 for

j = 1,...,k-1.

2) Let 0 k(X)'= 0 for some vector x. If k = m-i, the

result holds trivially. If k < (m-i), assume that

0 W = 1 for some j > k. By (3-5), k(X) = 0 implies

-chat g(x) <_ gk" By (3-6), 0 (x) = 1 implies that

g(x) > gj. Since gj > gk' it follows that

g(x) < g. < g(x),

an cbvious contradiction. Therefore g.(x) = 0, for

j = k + 1,..., m-l.11

Theorem 3

For any vector x, g(x) = gi' if and only if 0i(x) = 0, and

¢i-I(x)= 1.

24
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Proof

1) Let g(x) =gi for some x. Then by (3-5), g(x) =

gi 1 gi implies that Oi(x) = 0. By (3-6), g(x) =

gi > gi-i implies that Oi-l(X) = 1.

2) Let Oi(x) = 0, and Oi_l(x) = 1 for some x. By (3-5)

Oi(x) = 0 implies that g(x) <. gi. By (3-6),

Oi_l(x) = 1 implies that g(x) > gi-l Therefore it

follows that

gi-i < g(x) :. gi'

but the only value in the range of the function which

satisfies the inequality is gi. Therefore g(x) = gi"1 j

The ultimate importance of this method of expressing g(x)

is that the study of a very complicated multivalued absolute

effectiveness function can be simplified to the study of a

linear combination of simple dependent binary structure func-

tions of the type commonly treated in classic reliability.

It follows that the actual effectiveness function can be

written as follows:

h(x,t) = f(t) {(g 2 -g 1 ) 01 (x) + ... + (grm-gl) Oml(X)}.

Thus far the functions introduced are deterministic with

domain Q n Since Q n is also the outcome space of the perfor-

mance random vector, X(t), each of the functions can be

composed with this vector to define analogous random variables.

The absolute effectiveness random variable is defined by the

relation

G(t) = g(X(t)),

25



or equivalently

G(t) = (g2-gM) $l(t) + ... + (gm-gm-l) Omil(t),

where

O$.(X(t)), i = 1,..., rm-1.

The actual effectiveness random variable is defined by the

relation

H (t) f f:)G(t).

These effectiveness random variables have the advantage

that they are defined through a process which assures their

consistency with the decision-maker's standards. Their pri-

mary limitation is that they represent only instantaneous

effectiveness. That is for every nonnegative value of t

there is defined a distinct ra iom variable H(t). in Figure

5, the bold horizontal line depicts a possible curve of out-

comes of H(t), where f(t) is assumed to equal one for all non-

negative t.

Since combat engagements are extended over indefinite time

periods, it is desirable to aggregate the effectiveness curve

into a variable which measures accumulated effectiveness over

an interval. To fill this need the value random variable is

defined by the relation

t t

V(t) = f H(s) ds = f G(s) f(s) ds.
0 0

In Figure 5, the value randont variable is represented by the

shaded area below the curve of H(t).

6 26
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The value random variable is a measure of the type

desired, but in general it will have a complicated distribu-

tion, too unwieldy to be of practical use in decision making.
A relatively simple measure of effectiveness, which still

preserves many advantages of the value random variable, is

the quality function defined by the relation

q(t) = E[V(t)]

the mean or expected value of the value random variable.

To compute the quality function in a specific case, note

that

t1
q(t) -=(u) dul

0

t
tE[H(u)] du

0.

f (u) E[G(u)] du,

0

where the interchange of expectation and integration in the

second line is justified by application of Fubini's Theorem,

since H(u) is a family of nonnegative random variables. The

validity of this interchange is established by Royden [Ref.

12].

There are two approaches .for calculating q(t). The first

arises from the fact that

28
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E[G(u)] = 7P[X.(u) •,x_.I •) =

x

N
W Zd(i) Pli(U)'

i=1

where

Pli (u) = P [S (u) S i (0) =i
is called the interval probability function from state one to

state i. Thus the first result is that

t N-
!q(t) = flu) dli) Pli(U) du

i=l 0

N

(3-77

(3-7)d(i) I (irt)

where

t(3-8) f f(u) Pli(u) du.

0

2

i~il

where



The second approach follows from relation (3-4),

m-1

ERG(u)] - E[ Z (gj+l-gj) 4 .(u)]

J=i

m-1
= (gj+l-gj) E[Oj(u)]

j=l

m-1

.Z (gj+l-gi) Pb[Y(u) = 1]
j=-

m-1

j=l

where R (u) is the system reliability of the jth associated

system, computed on the basis of all components functioning

at time zero. And the second result is that

i~t -1
q(t) = f(u) (gj+l-gj) Rj(u) du

0 j--

S (gj+l-gj) f(u) R (L du

j=l 0

m-1
(3-9) = .(gj+l-gj) J(jlt)

j=l

where

t/.(3-10) i(j,t) =o f(u) R (u) du. •

Now since the functions f(t) and g(x) or d(i) are assumed

already defined by the decision-maker, all that is required for

30



calculation of the quality function is either set of

functions {pll(u),..., Pln(u)}, or {Rl(u),..., Rm_l(u)}. The

determination of the functions is treated in Section IV.

The quality function is the primary measure of effec-

tiveness proposed here. It is a one dimensional deterministic

function, yet it is based upon consideration of the random-

ness of unit performance. Since it is derived from functions

defined by the decision-maker, it is consistent with his

implicit judgment. And since it is a function of time, it

displays sensitivity to the length of engagement.

In order to illustrate the use of the quality function in

predicting unit effectiveness, this section will be closed with

an example.

Example I

Consider a tank killer team consisting of the following

components:

COMPONENT INDEX

Team Leader 1

Gunner 2

Recoilless Rifle 3

It is assumed that the unit is engaged in a large scale battle

as part of a large force. The performance random vector for

this unit, 1(t), has an outcome space S13 consisting of the

eight binary 3-vectors. Let the state function be defined as

follows:
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s{(l,l,1)} 1 s{(1,oo)} = 5

s{(l,O,l) = 2 s{(O,l,O)} = 6

s{(O,l,l)} 3 s{(Oo,l)1 = 7

s{(l,lO)) 4 s{(OO,,O)} = 8

The decision-maker is now faced with the problem of

constructing the absolute effectiveness function g(x). Sup-

pose the hypothetical team is considered to have two missions.

At any time the weapon is functioning, the primrAry mission is

to detect enemy tanks and bring them under fire. If the

weapon is in the failed condition, the secondary mission is to

detect enemy tanks and direct the fire of adjacent teams

against them. From experience, field test, or some other

information source, the user determines that wheii both person-

nel and the weapon are intact the team is capable of bringing

effective fire on eight tanks. per hour. lie decides to base

his absolute effectiveness function on this fire capability,

and his first step is to set g{(1,1,1)1 = 8. He feels that

in most units the leader and gunner will have equal ability in

firing the weapon. Therefore when either member becomes a

casualty when the w-apon is functioning, the decrease in effec-

tiveness is about the same. The user estimates the reduced

capability to be about five tanks per hour, and defines

g{(0,1,1)1 = g{(l,0,1)1 = 5. When the weapon fails, the team

performs the secondary fire direction mission. The user deter-

mines that both members together can detect and bring fire on

as many as three tanks per hour. However, if the leader alone

survives, he has a capability of two tanks per hour, while the 4
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gunner alone has a capability of only one per hour because he

has less experience and training than the leader in directing

fire. In the two cases where both members are casualties the

capability is, of course, zero. Thus the decision-maker

defines his absolute effectiveness as follows:

g{(1#1,1)} d(l) = g6 = 8

g{(l,0,l)} = d(2) = g5 = 5

g{(O,l,l)} = d(3) = g5 = 5

g{(1,1,0) } = d(4) = g4 = 3

g{(1,0,0)} = d(5) = g3 = 2

g{(0,1,0)} = d(6) = g 2 = 1

g{(0,0,1)1 = d(7) = g, = 0

g{(0,0,0)1 = d(8) = g, = 0

The only requirement to be met in practice is that the

resulting function faithfully reflect the true values of the

decision-maker. Additionally, when several units are being

compared, a separate function must be defined for each one,

and however they are constructed, it must be the case that

states of different units adjudged by the user to be equally

effective have the same value of g(x).

As indicated in (3-4), g(x) can be expressed as follows:

g(x) = (1-0) 01 (x) + (2-1) 0 2 (x) + (3-2) 03 (x) + (5-3) 04 (x) +

(8-5) 0 (x) where the structure functions Oi(x) are defined

in the table below.
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(1,1,1) 1 1 1 1 1

0(1,0,) 1 1 1 1 0

(0,i11) 1 1 1 1 012(i,1,1) 1 i 0 o

(1,0,0) 1 1 0 0 0

(0,1,0) 1 0 0 0 0

(0,0,1) 0 0 0 0 0

(.,0,0) 0 0 0 0 0

The block diacrams of coherent systems associated with these

structure functions are shown in Figure 6.

The decision-maker also wishes to define a time variance

function for the tank killer team which enhances the actual

effectiveness of every state the longer the engagement lasts.

He feels that enemy losses and jonfusion make friendly fire-

power more valuable later in the battle. He consequently

defines

f(t) = 2-e-t.

Thus f(O) = 1 and at the outset h(x,0) = g(x), and after one

hour h(x,l) = (l.633)g(x).

Assume the following conditional distribution for S(t) is

given.

P Ml(t) = e-t Pl e-3t-e-4t

P1 2 (t) - e- 6 t-e- 7 t P 1 6 .(t) = e- 2 t-e- 3 t

-(t) e-5t -6t Pl 7 (t) e -e

P 1 3 (t) e -- e- et

p1(t) e-t et p(t) =1-et
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Figure 6. Coherent Systems Associated with the Absolute

Effectiveness Function of Example 1.
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By (3-8),

I(,) - e"T e-

I(9,t) :2 -7t 1 e-8t

I I(4,t) = __- .- e'4 + 3 e-5t - 1 e-6t1~ I(5,t) e 2 -- t 1 -4t 1 -et

1 -6t 3 7t 1 -4t

I(6,t) = " -3 + e - 1 e4 t

I(7,t)= 2e-t + -- "2- 1 e- 3 t

I(8,t) = 2t - + 3e-t - 1 '2

And by (3-7),

8

i=1

=8 I(l,t) + 5 I(2,t) + 5 I(3,t)

+3 I(4,t) + 2 I(5,t) + 1 I(6,t)

+0 I(7,t) + 0 I(8,t)

15 3 -8t 6 -7t 1 -6t

-- e7 2 5 - 3•e-t 3 • -4t 1 e-2t"

Now the given interval probabilities are equivalent to

the following reliability functions of the associated systems

in Figure 6:
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-7t

R2 (t) 5t

R3 (t) = e- 4 t

R 4 M -3tR4 (t) = et

R5 (t) = e- 2 t

By (3-10),

J - e-7t + I e- 8 tJlt) 56• 7

7 2 -5t, 1 - 6t.
J(2,t) = - --r e + 7 e

J(3,t) = - 1 e- 4 t + 1 e-St

J(4,t) 5 - 2 e- 3 t + 1 e- 4 t

2 -2t 1 -3t.J(5,t) = -e- + -1 e

And by (3-9),

5

q(t) = (gi+1 -gi) J(j,t)

j=1

3 J(1,t) + 2 J(2,t) + 1 J(3,t)

+ 1 J(4,t) + 1 J(5,t)

653 3 e-8t 6 -7t 1 -5t

3 e-st 1 e-4t 1 e-3t _e-2t

which agrees with the previously computed result. 1f
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IV. UNIT PERFORMANCE MODEL

The quality function, q(t), has already been introduced

as a measure of effectiveness. The next step is the introduc-

tion of a model to translate the user's judgment and intuition

about combat dynamics into a description of the stochastic

performance process of the proposed unit structure. The pri-

mary requirements for the model are that it be sensitive to

structural alternatives, and that it provide results in a

form suitable for input to the quality function. There are

two alternative forms of performance information which can be

used in calculation of q(t). If expression (3-9) is used, the
inputs required are the reliability functions of the associ-

ated coherent systems. If the calculation is performed accord-

ing to expression (3-7), the information needed is the set of

interval probability functions {pll(t),...,PlN(t)). This

second type of information is the type cf performance descrip-

tion which is most easily determined employing the model

proposed in this section.

The unit to be modeled is assumed to be a complex ;!ruc-

ture which includes, as components, personnel, equipment, and

channels of information. The assumption will be made that

each of the components is either functioning or failed. At

the opening of an engagement all components are considered to

be functioning. Some components such as personnel are non-

renewable and do not return to the functioning condition once

tney leave it. Other components are renewable and can return
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to the functioning condition repeatedly. For instance the

information channel between a squad leader and a team leader

f which consists of voice communication can be interrupted by

battle noise, then restored when the 'noise subsides. There-

fore an engagement can be looked upon as a series of events

in time which change the state of the unit, through attrition,

interruption, restoration or some combination of these effects.

The state of the unit remains unaltered between these events.

One approach commonly used to portray this process is to

consider the performance of each component to be probabilis-

tically independent. This assumption is not acceptable for

this application since it severely limits the consideration

of dependence in the attrition process.

In order to integrate structural sensitivity into the

model, it is necessary that the interevent times and the na-

ture of each event be considered to obey random distributions

which depend upon the surviving structure. The following

proposal for accomplishing this is derived in part from the

work of Marshall and Olkin [Ref. 9].

The engaged unit is subject to a hostile environment which

* iconsists of the delivery over time of one or more types of

lethal projectiles, including nuclear weapons, artillery, and

small arms fire. Two assumptions are made about these fires.

1) The delivery of each type of projectile constitutes

an independent time homogeneous Poisson process,

having interarrival times distributed exponentially

with expected value iL where k is the index of the
*k

weapon type.

39



**---- - - " '1

2) For each unit state and each weapon type the damage

caused by each round obeys a probability mass func-

tion: Pk(jJ i) = P[Projectile of type k causes

transition to state j I unit is

in state i].

From these assumptions it follows that when the unit is in

state i, the distribution of arrivals of projectiles of type

k, which send the unit into state j, is Poisson having expo-

nential interarrival times with expected value

* Now in general the unit in state i can be subject to

transition into state j as a result of several threats. If

there are z types of projectiles which can cause the transi-

tion, then the distribution of all such events is the super-

position of z independent Poisson distributions, which is

itself Poisson, having exponential interarrival times with

mean p1 (jji)T 1 + 1.. + PZ(jji)t 2

In addition to attrition events there are also interruption

and restoration events which describe alterations in condition

of the renewable ccmponents. It is assumed that for each state

i all functioning renewable components have an exponential time

to failure with mean y., where j is the state which the com-

ponent's failure causes the unit to enter. Likewise, if state

i has a failed renewable component, then is the wean of the

"ik

exponential time to restoration and consequent transition into

state k.
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Let T.. be defined as the time interval from the unit's

entry into state i until an event occurs causing transition

into state j. Tij is then the time until an attrition event,

or an interruption-restoration event of the proper type

occurs. This is again a superposition of independent Poisson

processes resulting in a Poisson distribution having exponen-

tial interarrival times with expected value,

E[T1 1
[ij] = P(JiIj) + .0e + P(ji),C + i

and survival function

-(X. )t
PITij > t] = e

In general the unit in state i faces threats which can

cause transition to several different states. The outcome is

determined by the type of the earliest state-changing event to

occur. Let Ta by defined as the length of the time interval

between transition a-1 and transition a, so that

T = min[Tll,T 1 2 1... , TiN},

if state i was entered at transition a-l. If transition from

state i to state j is not possible, then Tij is considered to

be infinite, with Xi. = 0. Howard [Ref. 6] refers to this

type of model as a "competitive process" since it is equivalent

to a process in which, upon entry into state i, the random

variables Tij are sampled and, in effect, compete for the

earliest outcome.
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The survival function of T is derived as follows:

PITa > t] - P[Ti > t, Ti 2 > t,..., TiN > t)

= P[T.i > t] P[T 2 > t]...P[TiN > t]

e-(Vxll + X i2 + ... + X iN )t
= e

Thus Ta is distributed exponentially with mean,

E[T ] = +__1 + A W X1il i2 + "'+ iN i

Thus the original assumptions of Poisson arrival of projectiles,

and exponential interruption-restoration times, imply that the

times between state-changing events are also exponentially
1

distributed with mean

The validity of these assumptions must be considered in

any application of the model. The assumption of Poisson inci-

dence of fires is characteristic of relative stability in

delivery rates. This distribution would not be consistent

with scenarios which included large-scale enemy reinforcement

or temporary massing of fires.

The exponential distribution of the interevent times, Ta,

implies the following result:

P[T > t + sITs > t] = e e 1

a a eX 1 t

= PIT • s] > *

This result is referred to as the "memoryiess" property or, in

reliability theory, as the "no wear" property. The effect of
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the property in this model is that a unit's probability of

successfully remaining in its current state for one addi-

tional minute, is completely independent of the amount of

time already spent in the state. This property fails to ac-

count for such factors as fatigue or depletion of supplies.
However in any case where the effect of these factors is

insignificant compared with the actual attrition and interrup-

tion, the "no wear" property may prove to be acceptable.

The major consequence of the exponential assumptions is

that the Markov property holds. That is, for t 2. u 2 0,

P[S(t) iS(v), u . v Ž 0] = P[S(t) = i S(u)],

or the distribution of future S(t) depends only upon the cur-

rent state, and not at all upon earlier information. The

disadvantage of this property is that it does not permit con-
sideration of such phenomena as momentum and collapse of

situation. In applications where such effects are considered

important, alteration would be required.

The fortunate consequence of the Markov property is that

it qualifies the process, {S(t), t . 01, as a continuous para-

meter Markov chain, a type of process which possesses a well

developed method of solution.

The decision-maker using this model is presumed to have in

mind a specific unit structure and a specific engagement

scenario. From the scenario he determines the variety of

projectile types to which the unit is vulnerable along with

rates of fire Tk. Then for each state i he must specify the
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mass functions Pk(Jli) for each type threat k. These mass

functions are the primary ingredient of the model's sensi-

tivity to structure. They should be based on such variables

as each individual's level of training, the capacity in which

he is serving due to attrition of key personnel, the degree

to which he must expose himself to hostile fire as a result

of his current position, and the current condition of channels

of communication. The specification of the mass functions

will be the most difficult part of parameterizing the model.

But it is indispensible if worthwhile investigation of unit

structure is desired.

The fact that the Markov property holds leads to the

derivation of two sets of simultaneous first order differen-

tial equationz which can be solved for all the functions

Pij(t). These two sets of equations are known as Kolmogorov's

forward equations and backward equations. The actual deriva-

tion is not presented here but is given in Ross (Ref. 11].

Before presenting these equations, several notational concepts

are introduced.

There are N2 distinct functions pij(t), which appear in

the functional matrix

--ll(t) ... PlN(t)"

P(t) =

PN(t) . (t). P
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I where the function Pij (t) appears in the ith row and jth
column. For any t . 0 the rows of p(t) add to one. Since

Pj{(°) 1 i=j
I =0 i'vi,

it follows that

71 0 ... 0
• 01F ~ ~~P(O) F **

The functional matrix P'(t) is defined as follows:

p 11 (t) .

PPl t) *.

wh reP 'NI(t) . .P'NN(t)

where

d p.. (t)
ij dt

Using the parameters already defined in this section, the
constant matrix A is defined as follows:

"o 12 ... N
A21  0

A.

AN1 SL ., 01
where Aij is the reciprocal of the mean of Tij, and ij appears
ith rcw and jth column. Since no transitions are considered
from any state into itself Aii 0, for i 8 1,..., N.
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L J
The constant matrix B is defined as follows:

"1i 1l2 Xi N
£X •21 X 2"

L N1 -N '

N

where X Xii, the reciprocal mean of the interevent time
j=l when the unit is in state i.

Kolmogorov's equations are stated in matrix form below.

The backward equations are given by

(4-1) P'(t) = B P(t)

with initial condition P(O) = I. The forward equations are

given by

(4-2) P'(t) = P(t) B,

with initial condition P(O) = I. The operation indicated on

the right of each expression is matrix multiplication. The

fact that B P(t) = P(t)B is of special interest since matrix

multiplication is not, in general, commutative. The solution

of the process will consist of solving the backward equations

using Laplace transforms.

The Laplace transform of any functional matrix A(t), is

indicated by

L{A(t)} = A(s) ,

which is simply the matrix of Laplace transforms displayed in

the same order as in A(t). For any functional matrix AMt),
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(4-3) L(A' (t)M A' (s) sA(s) - (0)

an equation proved by Kreyszig [Ref. 8]. Also f 7 any func-

tional matrix A(t) and any constant matrix C,

(4-4) L{C A(t)) - C A(s)

(4-5) L{A(t)CJ = A(s)C

If Laplace transforms are taken of both sides of (4-1)

the result is

L{P'(t)= L{B P(t)}

which by (4-3) and (4-4) is equivalent to

sP(t) - P(O) = B.P(t) ,

or since P(O) I,

sP(t) - B P(t) = I,

or

[sI - B] P(t) = I.

Premultiplying both sides by the inverse of (sI - B] gives,

P(t) = [sI- B]-1

which gives the solution for L{P(t)) in terms of the constant

matrix B. The solution is complete when the transform is

inverted to give P(t).

Howard [Ref. 6] shows that

L{P(t)} = (sI - B]-lI

if and only if

P(t) = eBt
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where
t B 

B2 t2 B3 3
et I + Bt 4- - + - +

is called the matrix exponential function. This expression

may be used to calculate approximations to the elements of

P(t), but will not provide exact solutions. Such a solution

can be arrived at by finding the inverse of [sI - B] and

using the method of partial fractions to translate the result

into invertible Laplace transforms.

Examle 2

Consider again the tank killer team of Example 1, with the

same three components, all considered nonrenewable, and the

same state function s(x).

The scenario of interest involves two types of external

threat. The first threat consists of small arms projectiles,

delivered with a Poisson rate of fire T 50/hour. The

second threat is artillery fire with rate T2 = 10/hour.

The decision-maker now determines the approximate proba-

bility mass function for each state-threat combination.

For state one and the small arms threat, the user first

notes a single round cannot cause more than one casualty. He

therefore defines P1 (511) = P1 (611) = P1 (711) = P1 (811) = 0,

since these transitions would entail multiple attrition. He

feels that the gunner is about 50% more vulnerable to small

arms than the leader because of his firing position, and the

fact that the backblast of his weapon pinpoints his location.

The weapon is considered only half as vulnerable as the leader

because its small presented profile. The user thus estimates

the following mass function:
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T-- n - - ,,,~

P1 (111) - .94 P1 (511) - 0

P1 (2l11 = .03 Pl(61i) - 0

P 1 011I) - .02 P1 011j) - 0

P (411i) - .01 k'i(IJ.A =U

where the actual magnitudes may be '.ased on field data,

simulation, or intuition.

For state one and the artillery threat multiple attrition

is possible. The user feeis that each artillery round has a

capability to destroy all three components and defines

P2 (811) = .1 . The gunner is considered more vulnerable to

artillery fire for identical reasons as cited under small arms.

The decision-maker defines this mass function as follows:

P2 C(11) = .60 P2 (5 1) = .1

P2(2 1.I)= .05 P2 (6 i) = 0

P 2 (311) = .1 P2 (7 i) = 0

P2 (4 i) = .05 P2 (8 i) = .1

The probability of transition into state seven is considered

to be zero, since a round placed well enough to eliminate both

personnel would be expected to destroy the weapon as well.

Transition to state six is similarly considered impossible.

The actual magi."tudes are again based on the user's judgment.

Since there are no renewable components the parameters Xij

can now be computed:

49



l 0 (trivial transitions are ignored)

x12" = P1 (2j1)Tl + P2 (211)T 2

= (.03)(50) + (.05)(10)

=2

1 := P - (311)T• + P2 (311)T 2

= (.02)(50) + (.1)(10)

=2

14 P1 (411)T 1 + P 2 (411) T2

= (.01)(50) + (.05)(10)

IN15 = P1 (511)T 1 +. P 2 (511)T 2

- (0) (50) + (.1) (10)

1l6 = P (611)Tl + P 2 (611)t 2

- 0'

xI7 P1 (711)-1 + P 2 (711)-c2

:0

x 18  P 1(811)T 1 + P 2 (811)T 2

-0 + (.1)(10)
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The construction of the full set of mass functions

results in the constant matrix A shown in Figure 7, and the

functional matrix (sI - B] in Figure 8.

The method of solution is to invert [sI - B] by the method

of cofactors using the relation

iij~s) i+j M-s
= ISI - BI j.

where IsI - BI is the determinant of the matrix [sI - B], and

Mji(s) is the determinant derived from IsI - Bl by deleting

the jth row and ith column.

The advantage of the cofactor method is that it permits

the elements of [sI( - B]- to be computed individually saving

time in cases where only a portion of the inverse is needed.

The results are as follows:

SI1 = L{e- 7 ti,

- 2 1 1p1 2(s) (s+7)(s+S5) - PTT -s+7

L{e-St - e-7t ,

i 2 2 2

p 1 3 (s) = (s+7)(s+6) = s+6-- s+T

= L{2e-6t _ 2e- 7 t},

P14 s+7) (s+6) = - - s+7

= L{e- 6t e- 7 t,
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2 2 1 1 0 0

0 0 0 0 2 2 0

0 0 0 0 1 0 3 2

0 0 0 0 0 1 3 2

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 4

o 0 0 0 0 0 4

o 0 0 0 0 0 0 0

Figure 7. Constant Matrix A

5i
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"s+7 -2 -2 -1 -. 0 0 -1

0 s+5 0 0 -2 -2 0 -1
0 0 s+6 0 -2 0 -3 -2
0 0 0 s+6 0 -i -3 -2
o 0 0 0 s+4 0 0 -4

0 0 0 0 0 s+4 0 -4

0 0 0 0 s+4 -4

0 0 00 0 0 0 S

Figure. Functionlal Matrix [sI - B]

II

522



P1 5 (S) = (s*7)-S+4) + TS+7TS+-5) (S+Aq) +(S+7) (s+F(s-+-4)

__ 1 2 +2
S+7 - -s-+ T-w s+ S+4

-L~e-7 - e- 6t -2e 5 t + 2e 1,

4~) + 1
P16s (s-+7) (S+5) (s-+4) -(S+7) (s+6) (STZT

1 3
1 'T 2 +T

s+7 s+6 =S+ -s+4

-7t 1 -6t -5t 3 -4t
=L{e - Te - 2e + -Te 1j,

9

P3.7 (s) = s+7)(s+6)(s+4)

9. 3

3 7+ + * s+

L3- 7t _9 e-S6t +3 e-4t

(S)~ i 48 + 32+6

P1 (-s+6 (S+4S (s+7) (s+5) (S+4)S (S+7) s+6

+ 2 + + 1

(s-+7) (sT5ST- (s+7) (s+4-s+ (s+7) s

2 3 + 3 5
-- -- G, s+ s=+5 +

=L{1-2e-
7t + 3e- t + 3e- t _ See4 t).

8a
As required =j~t t 0

The interval probabilities (p11 (t),..., P18 (t)) are now

known and the quality function can be computed for any

functions f(t), and g(x) or ihI
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It should be noted that the example was particularly
simplified by the fact that the matrix [sI - B] had no non-

zero entries below the diagonal. The reason for this is

that all three components were considered to be nonrenewable.

Thus when the unit left any state it could never return to

it. And by arranging the states in order so that the earlier

states corresponded to the higher rows, the triangular form

was assured. The resulting denominator of all the expres-

sions Pij (s) was of the form

8
IsI - BI = 7(s+X.)

i=l

which is already in the factored form necessary for the partial

fraction expansion.

If however at least one of the components had been renew-

able, there would- have been at least one positive entry below

the diagonal and the denominator of the expressions pij(s)

would have been of the form,

8
JsI - BI 77(s+X i) - K(S)i=l

where K(s) is a polynomial function of s of degree less than

eiwht. Therefore IsI - BI is a polynomial of degree eight

whoae roots and factors are unknown in general. This computa-

tional problem is formidable since the degree of polynomials

to be solved will equal N = 2 n (where n is number of system

components), and there is no exact solution for polynomial

equations of degree greater than four. There are however
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computer routines which perform approximation procedures,

which may prove to be of value in employing this model.

Finally, a rough measure of effectiveness may be computed

from q(t) without inverting the Laplace transforms when

f(t) 1, t a 0. Let the quality index be defined as follows:

Q iq(co) = (d)j) Pij(u)du

j1j 0

~d(j) Ie-0~(ud
1 j=l oif o-o u~d

Sj=l 0

N

- d(j) - (0
j=j.

Thus Q is the expected aggregate value over an infinite time

period. Of course, any realistically defined unit will

reach a state with zero effectiveness in finitj time, so

that 0 has a finite value. However this measure does not dif-

ferentiate between units whose quality functions are thinly

distributed over the real time line and those whose effec-

tiveness is heavily concentrated in short intervals of reason-

- able engagement duration.
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V. CONCLUSION

The purpose of this thesis has been to outline a proposed

modeling viewpoint. It has not been advanced as a finished

product. It is hoped that the concepts introduced will be

considered as a worthwhile point of departure for additional

research, which could result in establishment of a valuable

decision tool for choosing among alternative unit structures.

The most critical unsolved problem is the computational

difficulty involved in solving the model. In addition -o the

inversion of Laplace transforms, the current solution neces-

sitates the evaluation of large order determinants, which can

become unwieldy even with electronic computers. Thus the

current span of application is limited to small organizations.

Research to extend this span should concentrate on finding

simplified computational procedures for exact solution, or

alternatively, determining efficient and accurate approximation

methods. The use of the infinite series definition of the

matrix exponential function as'an approximation method was

introduced in Section IV. Unfortunately, this expression

requires sequential multiplication of large order matrices, an

operation which is as computationally explosive as evaluation of

determinants.

Current research in reliability theory may offer a valuable

approximation method, particularly since all of the random

processes and measures of effectiveness were shown to be
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expressible as linear functions of variables related to

reliability of coherent systems. Esary and Proschan [Ref. 4]

show the usefulness of reliability bounds and approximations

based on the concepts of minimal cut sets and minimal path

* sets of components. Adaptation of this method to the avail-

able type of data inputs may prove useful to the current model.

A possible exact solution method using flow graph analysis

is proposed by Howard [Ref. 6], but at present it appears to be

subject to an even greater computational burden than the cur-

rent method.

In order to enhance the accuracy of the model it may be

desirable to alter the assumption of exponentially distributed

interevent times in favor of some other distribution. This

would change the process to one of the semi-Markov variety.

These processes are more difficult to solve in general, but

offer greater flexibility in definition. Ross (Ref. 11] and

Howard [Ref. 6] consider several solution methods.

A highly desirable addition to the model would be a provi-

sion for random threat. Rather than assuming constant Poisson

rates of enemy fire, such a refinement would allow rates to

vary randomly, thus representing periods of non-engagement as

well as change of situation during engagements. The analogous

reliability concepts of random wear and random shock have been

studied by Gaver [Ref. 5] and Reynolds and Savage [Ref. 10].

Despite its capacity for refinement, the proposed model in

present form does fill many of the needs for the study of struc-

ture. It offers the decision-maker a model which uses his own
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judgment, in an intuitively clear process of parameterizaticn,

in order to compute a functional measure of effectiveness

based on fundamental functions which he, himself, defines.

Indeed, with the exception of clearly stated assumptions made

in building the model, and the purely mathematical solution

process, the model in use is completely established by the

user, with whom ultimate decision responsibility rests.
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